天才领路者

盘点考研数学中高数常考题型----考研数学

发布时间: 2019-09-18 18:26:41

  对于2020考研数学的备考学生来说,高数部分一直是一个重难点,有些题型需要你把握。为此,小编整理了“2020考研数学:高数常考题型”的文章,希望对大家有所帮助。
  1、求极限 无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。 区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!
  2、利用中值定理证明等式或不等式 利用中值定理证明等式或不等式,利用函数单调性证明不等式证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。 等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的一个难点,但考查的概率不大。

盘点考研数学中高数常考题型          考研数学

  3、求导 一元函数求导数,多元函数求偏导数求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。 一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。
  4、级数 级数问题常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与收敛的本质含义均是考查的重点,但常常以小题形式出现。 函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。
  5、积分的计算 积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面积分的计算。 这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的使用,对称性的使用等。
  6、微分方程解常微分方程 微分方程解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。

更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,请进入 天才领路者网站详细了解
咨询电话:400-850-8622

相关文章

最新文章

相关课程

温馨提示:提交留言后老师会第一时间与您联系! 热线电话:400-850-8622