小学前如何培养孩子学习数学的兴趣?如何解
面议发布时间: 2019-09-13 09:16:13
数学教学中如何整合教学内容?*数学教材已经提供了每单元和每节课的基本教学内容,但是教师教学前需要深入钻研和领会教材是如何体现教学目标和要求的,明确教学要点有哪些,教学的顺序是怎样安排的等,今天,朴新小编给大家数学教学方法。
教学内容的确定
合理地确定教学内容的广度和深度
所谓教学内容的广度,是指知识的范围或知识的量。从信息论的角度说就是一节课传输给学生的信息量。一节课的信息量过大,知识点过多,学生难以接受;而一节课的信息量过少,知识点过少,也会浪费时间,不利于调动学生学习的积极性。教学内容的广度要确定得合理,与知识的难易和学生的条件有密切关系,一般来说,难理解的知识要少一点,容易理解的知识可适当多一些;对低年级学生教学的步子要小一点,对高年级学生教学的步子要大一点。例如,低年级教学连减的两步应用题,一节课要使学生掌握两种解法就比较紧,有的学生往往分不清两种解法,如果分成两节课来教学,效果就好一些。中年级教学分数的初步认识,对学生来说新概念比较难建立,也可以步子小一点,*节课教学几分之一,第二节课再教学几分之几,以利于通过较多的操作、直观给学生形成分数的正确表象。到了高年级再讲分数概念,学生已经有了一定基础,进行抽象概括时可以适当加快进度。有些教学内容,从知识点上看并不一定难,但是所选的数目大小往往会影响知识的难易。例如,在中年级教学四则混合运算,如果数目过大,步数过多,就会增加知识的难度。高年级教学*公约数和最小公倍数,如果数目比较大,也会增加知识的难度。因此,大纲、教材中对上述内容的教学都限定数目的大小和运算步数的多少,是非常必要的。
教学内容的深度一般是指知识的抽象概括的水平。同样的教学内容可以有不同的深度,选择什么样的深度往往是根据学生的思维发展水平来确定的。例如,低年级教学加、减法的认识,只要通过操作、直观使学生了解,把两个数合并在一起求一共是多少,用加法算;从一个数里去掉一部分求剩下的是多少,用减法算。到高年级教学加、减法就可以采用定义的形式说明加、减法的意义。
明确教学的重点、难点和关键
当一节课的教学内容有几个知识点时,往往需要确定哪些是重点,哪些是难点,以免在教学时抓不住主要的基本的内容,而在次要的或者学生容易接受的内容上多花时间,或者面面俱到平均使用力量,影响重点、难点的理解和掌握,而达不到预定的教学效果。例如,*教学5的认识,由于学生入学前一般都能按实物点数,就不宜在主题画上用过多的时间去练习数数,而应把5的组成和写数字5作为教学的重点。一般地说,数学的基本概念、法则、公式、性质都是教学的重点,学生必须掌握好这些基础知识。但是其中也有主从的关系,而弄清主从关系,教学时可以更好地发挥学习的迁移作用,从而能节省教学时间,提高教学效率。例如,教过除数是整数的小数除法,再教学除数是小数的小数除法时,引导学生应用除法商不变的性质和小数点移动引起小数大小的变化等知识把它转化为除数是整数的小数除法,就不难解决。这样可以着重做一些把除数的小数点移动位置,使它变成整数,再把被除数的小数向右移动相同位数的练习。
有时一部分知识或一个知识点需要弄清教学的关键,它对所学的知识能否掌握好起着决定性的作用。例如,教学用两位数除,关键是使学生掌握用两位数除两、三位数商一位数的试商方法,至于商多位数的可以依此类推。又例如,教学长方体的表面积,关键在于通过操作、直观使学生弄清一个长方体有哪3组相对的长方形面,根据长方体的长、宽、高确定每组长方形面的长、宽各是多少。这是发展学生空间观念的问题。有些教师抓住这个关键,收到很好的教学效果。如果采取另外的方法,如通过例子给学生总结各种不同情况的计算表面积的公式,而忽视学生空间观念的发展,教学效果就比较差,教学时间也用得多。
教学内容选择学习方式
一、认真解读教材,选择适当的学习方式
在现在的西师版数学教材中有大量插图,包括实物图、示意图、表格图、线段图、几何图等。在插图旁还标注有文字、提示语,这些有机的编排成分能配合数学*的特点进行思想教育,能沟通数学与社会、自然的联系,能沟通数学与生活的联系,渗透着数学的思想方法。在这里我们教师就要认真解读教材,读懂文本编排意图
弄清文中插图和旁注文字、提示语等的意思。只有弄清了编排意图,我们才好选择适当的学习方式让学生更好地学习,只有在正确地解读教材的基础上再来选择适当的学习方式,这样我们的教学才会成功。
二、根据不同学年段的教学内容,选择适当的学习方式
数学教学是学生进行数学活动的教学,不同学年段的教学内容由不同年龄段的孩子来学习,在教学中我们就应该根据学生的年龄特征和学习心理,选择适当的学习方式。
在高年级数学学习方式上,我认为应让学生在自主探索与小组合作学习的互动中有效地参与学习作为主要的学习方式。在中年级的数学学习方式上主要是借助图像学习、在归纳中学习、在质疑中学习、在实践探索中学习等学习方式。 而低年级因为孩子年龄小,思维更趋向于直观的表象,数学学习的方式我选择学生喜爱的学习方式,以操作式、游戏式、体验式、猜想式等作为主要的学习方式。
数学教材中概念教学
1.有关“平面图形”的概念教学内容分析
在*数学中,平面图形的概念多数是通过抽象概括而形成的,主要涉及现实生活中的物体形状、大小、位置关系等。由于平面图形概念本身具有复杂性和抽象性等特点,加之*生接受和理解能力所限,导致学习过程中会存在一定的困难。普遍来看,目前在平面图形概念教学中,通常会存在讲解概念机械照搬、揭示概念内涵不深、分析概念应用不直观等问题,导致学生理解掌握概念比较吃力,灵活应用的差距就更大。因此,在实际教学中,教师应该根据概念本身的特点和学生的认知特点,备课时对课程进行精心设计,上课时对学生进行科学引导。
在平面图形概念的教学中,教师可以提供一些直观教具,使学生更容易理解概念的本质。比如“认识长方形和正方形”中,教师可以以现实生活中的长方形物品做示范,让学生直观感知长方形的特征。到学生动手体验环节时,让学生自己动手做一个长方形,教师可以让学生借助自己做的长方形来观察长方形有四条边、四个角、四个顶点,进一步增强学生感知的效果,使学生能够建立正确的空间观念。当然,在平面几何概念教学时,不应孤立地来教概念,而应将新旧知识联系起来,将课堂知识和实际生活联系起来,通过这种联系的教学思路,引领学生以联系的观点来分析概念、掌握知识、解决问题。
2.有关“立体图形”的概念教学内容分析
*数学是一门系统性强、枯燥、抽象的*,尤其是*所学的立体图形的体积和表面积。由平面图形到立体图形,是*生空间观念发展中的一次飞跃。但*生的思维正处在从形象思维向逻辑思维过渡的阶段,他们接纳、理解抽象数学知识的能力有限。因此,立体图形的教学应在平面图形教学的基础上进行拓展,使学生更容易接受。在“长方体和正方体的认识”教学中,在引导学生掌握长方体的基本特征之后,教师可以组织学生进行讨论:长方体相对面为什么相等、相对的棱为什么相等?让学生通过对教具摸一摸、比一比等方式来理解长方体的基本特征。既让学生知道长方体的基本特征,又掌握了相对面的面积为什么相等、相对的棱长度相等等知识。通过这种实践性教学,可以使学生很好地把握“认识”这一关键词的内涵。
在立体图形概念教学过程中,教师应充分利用积木等教具,指导学生先从外在形象上认识事物,在头脑中形成一定的表象,再在此基础上进行概括。有条件的学校,还可以利用多媒体手段来演示,使教学更生动、更直观。比如,让学生拼搭四个正方体积木,看他们能拼出多少种不同的立方体,并从不同的方向和角度观察,探讨各种立方体之间的不同特点,培养学生的空间思维能力和概括能力。教师在组织学生进行实际操作时,要重点处理好两个方面的关系:一是“扶”与“放”。既要“扶”,也就是对学生的操作进行必要的指导,又要“放”,即为学生留出一定的探索时间和空间。能让学生自己操作的就不演示、能让学生自己完成的就不干预、能让学生自己归纳的就不讲解。二是“动”与“静”。所谓“动”,就是操作活动的过程。既要让学生明白要做些什么、怎样做,又要让学生知道想些什么、如何想。所谓“静”,就是活动后的总结归纳过程。通过组织学生进行交流讨论,引导学生把对立体图形的感性认识上升到理性认识。更为重要的是,在“立体图形”的概念教学中,教师给学生的不仅仅是得出教学结论,还有研究学习的方法。
更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,请进入 天才领路者网站详细了解
咨询电话:400-850-8622
相关文章
最新文章
相关课程