天津高三复读班
面议发布时间: 2022-12-09 09:16:50
天津武清区高考集训机构哪家好.小编推荐锐思,锐思如果想了解详情可以咨询客服老师,或者留言,老师看到会时间联系您,下面小编为大家分享一些学习方法。
高三数学复习知识点
a(1)=a,a(n)为公差为r的等差数列
通项公式:
a(n)=a(n—1)+r=a(n—2)+2r=a[n—(n—1)]+(n—1)r=a(1)+(n—1)r=a+(n—1)
可用归纳法证明。
n=1时,a(1)=a+(1—1)r=a。成立。
假设n=k时,等差数列的通项公式成立。a(k)=a+(k—1)r
则,n=k+1时,a(k+1)=a(k)+r=a+(k—1)r+r=a+[(k+1)—1]r
通项公式也成立
因此,由归纳法知,等差数列的通项公式是正确的。
求和公式:
S(n)=a(1)+a(2)+......+a(n)
=a+(a+r)+......+[a+(n—1)r]
=na+r[1+2+......+(n—1)]
=na+n(n—1)r/2
同样,可用归纳法证明求和公式。
a(1)=a,a(n)为公比为r(r不等于0)的等比数列
通项公式:
a(n)=a(n—1)r=a(n—2)r^2=......=a[n—(n—1)]r^(n—1)=a(1)r^(n—1)=ar^(n—1)、
可用归纳法证明等比数列的通项公式。
求和公式:
S(n)=a(1)+a(2)+......+a(n)
=a+ar+......+ar^(n—1)
=a[1+r+......+r^(n—1)]
r不等于1时,
S(n)=a[1—r^n]/[1—r]
r=1时,
S(n)=na
同样,可用归纳法证明求和公式。
更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,请进入 天津锐思教育(师资强 校区多)网站详细了解
咨询电话:17332948818
学员评价
相关文章
最新文章
相关课程